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Abstract

A classification task is chosen to compare the performance of a feed-forward neural
network with that of a gaussian discriminant analysis, both in a Bayesian framework.
The data set is taken from the National Severe Storms Laboratory’s Mesocyclone De-
tection Algorithm, and the two classes of interest consist of circulations that are tor-
nadic and those that are not. Two measures of performance and two methods of
classification are considered. It is shown that a neural network whose outputs have
been transformed to posterior probabilities outperforms a neural network without such
a transformation, and also outperforms discriminant analysis, regardless of the two
measures of performance considered herein.



1 Introduction

In a series of two recent papers (Marzban and Stumpf, 1995, 1997) the development of
several Neural Networks (NN) for the diagnosis of tornados and damaging wind has been
outlined. In the first paper, using 6 storm days (3,258 circulations) a comparison was made
between an NN and Linear Discriminant Analysis ' (LDA) in predicting whether or not
a circulation detected by the National Severe Storms Laboratory’s Mesocyclone Detection
Algorithm (MDA) is tornadic. The comparison was made in a non-probabilistic scheme. In
the second paper, a Bayesian probabilistic framework was set up within which an NN was
developed for the prediction of damaging wind. Both data sets were composed of 6 storm
days.

Since that time, more data have become available and revised NNs have been developed.
One such NN is based on 22 storm days (26,058 circulations) and is for the diagnosis of
tornados. In this article, the performance of this NN will be compared to that of Discrimi-
nant Analysis (DA) (both Linear and Quadratic) in a Bayesian framework, in terms of two
performance measures. Thus the primary difference between this paper and the first of the
aforementioned papers is in 1) the larger data set, 2) the probabilistic framework, and 3) a
“better” measure of performance, in that chance is taken into account, and it is “equitable”
(Gandin and Murphy, 1992), all attributes of the present article. The input variables are
the same 23 that were employed in the earlier works, derived from Doppler radar velocity
data, and the outputs represent the existence/nonexistence of tornados based on ground
observation.

It 1s worth pointing out that since both of the measures considered here are one-

!Throughout this article, discriminant analysis refers to gaussian discriminant analysis. Other nonpara-
metric forms will not be discussed.



dimensional (scalar) quantities, in contrast to the inherently multi-dimensional nature of
forecast quality (Marzban and Stumpf, 1997; Murphy, 1991, 1996), any conclusion regarding
the relative performance of the various methods is limited to these measures only. In other
words, it is entirely possible that whereas an NN may outperform DA in terms of some
measure of performance, the opposite may occur when performance is gauged in terms of
some other measure. For example, Marzban and Stumpf (1997) gauged the performance of
an NN (for a different problem) in terms of 15 different measures, and found that the NN
outperformed logistic regression in terms of all the measures, except for one - a measure of
discrimination put forth by Murphy, Brown and Chen (1989). That the “winner” depends
on the choice of measure may seem disturbing at first; however, it is a simple consequence
of attempting to gauge a multidimensional quantity with a one-dimensional measure. For
such reasons, it 1s imperative to select a particular measure of performance based on some
other criterion, before any statements are made about the superiority of one algorithm over
another. Several criteria were considered in Marzban and Stumpf (1997); they all require
that a measure be well-defined in a rare-event situation, and that it should not be prone to
“hedging” (Murphy and Epstein, 1967). The two measures considered herein satisfy both
criteria, but it should be emphasized that they are still only scalar measures, and as such

do not represent all the dimensions of performance quality.

2 The Mesocyclone Detection Algorithm (MDA)

The National Severe Storms Laboratory’s MDA uses pattern recognition to detect rotation
signatures (hereafter called “circulations”) in Doppler weather radar data. First, azimuthal
shear pattern vectors are built; these are vectors of decreasing radial velocity along adjacent

radar sample volumes at constant range from the radar. These pattern vectors must meet



minimum strength requirements (velocity differences ranging from 10 m/s at ranges within
100 km of the radar, decreasing to 6 m/s at ranges greater than 200 km from the radar).
Next, the pattern vectors are combined into 2D “features,” based on spatial proximity. “Core
regions” of azimuthal shear are extracted from the 2D feature such that their aspect ratio
does not exceed 2. The strength of a 2D feature is determined by measuring the rotational
velocity and shear using the maximum inbound and outbound radial velocities. Next, a
“3D circulation” is defined when there is a continuous depth of 2D features meeting the
above strength criteria, which can be vertically associated (the details of vertical association
are omitted for brevity). Some 3D circulations can be associated in time with another
detection from a previous volume scan (usually 5 or 6 minutes in the past) (the details of
time association are also omitted for brevity).

One of the many attributes computed by the MDA is a quantity called the “strength
rank.” It is a non-dimensional number related to the range-dependent strength parameters
(rotational velocity and shear) of a circulation. Each 2D feature used to build a 3D detection
has a strength rank. The strength rank of the 3D detection is the value at which a continuous
depth (> 3 km, base < 5 km above ground level) of 2D features used to make up this 3D
detection are greater than or equal to this value. In turn, another quantity - called MSI -
is defined as the vertically integrated strength rank (x1000) for all 2D features within the
3D detection. This quantity is thought to be a good predictor of tornados. Its distribution
both for nontornadic (0) and tornadic (1) circulations is shown in Figure 1. A classification
rule, based on this quantity, can be devised by, first, placing a threshold on it, above which
circulations are classified as tornadic, and then, vary the threshold itself to optimize the
performance of the algorithm. The values of the performance measures based on this MSI

classification rule will be presented in the Conclusions Section.
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Figure 1: The distribution of MSI for nontornadic (0) and tornadic (1) circulations. The
two distributions have been scaled to have equal areas.

The 23 attributes based on Doppler velocity data used for both the NN and DA were
1. Base (m), 2. Depth (m), 3. “Strength rank” (0-9), 4. Low-altitude diameter (m), 5.
Maximum diameter (m), 6. Height of maximum diameter (m), 7. Low-altitude rotational
velocity (m/s), 8. Maximum rotational velocity (m/s), 9. Height of maximum rotational
velocity (m), 10. Low-altitude shear (m/s/km), 11. Maximum shear (m/s/km), 12. Height of
maximum shear (m), 13. Low-altitude gate-to-gate velocity difference (m/s), 14. Maximum
gate-to-gate velocity difference (m/s), 15. Height of maximum gate-to-gate velocity difference
(m), 16. Core base (m), 17. Core depth (m), 18. Age (s), 19. Strength index weighted by
avg density of integrated layer (MSI), 20. Strength index “rank”, 21. Relative depth (%),

22. Low-altitude convergence (m/s), and 23. Mid-altitude convergence (m/s).



3 NN and DA: Theoretical Considerations

Details of DA can be found in (McLachlan, 1992). In its simplest form, the data is assumed
to be multivariate normal, and classification is made based on whether or not an observation
is less than or greater than some threshold value according to the posterior probability of
each class. Specifically, the Likelihood of an observation, x, given that it belongs to the 7

class, 1s assumed to be

LZ(.I') ~ # el’p_%(l‘_ﬂi)T V;'_l (l‘_ﬂi)

vdet V;
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where y; is the vector of the means and V; is the covariance matrix for the ' class (here
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i = 0,1), all estimated from a training data set. Then, an observation, z, is classified into
the class with the larger posterior probability, P;(z), which in turn is derived from Bayes’

theorem:
pili(x)
Pi T) = 5
()= o To(e) + I (2)

where pg,p; are the prior probabilities for the two groups, discussed below. Of course,
po+pr =1 and P+ P = 1. It is easy to show (Marzban, 1997; McLachlan, 1992)
that the decision criterion (or the discrimination function, log(Pi(z)/Po(x))), is quadratic in
the quantity z; such an analysis is referred to as a Quadratic Discriminant Analysis (QDA).
However, if V5 = V4, then the decision criterion is linear in x, leading to a Linear Discriminant
Analysis (LDA). The main advantage of the latter is in allowing for the interpretation of the
linear coefficients as “predictive strengths” of the corresponding variables.

By contrast, training an NN involves the minimization of some error function. As such,

it is a generalized regression model. Often, and in this application, the mean-square error is



chosen as the error function:

N
Bw) = 2t~ n(e)

where the w;; are the weights (parameters) of the network to be estimated during training,
N is the number of cases in the training set, and ¢, and p; are the target (actual) and the
predicted values of a single output node. For a larger number of output nodes, one introduces
another )~ that ranges over the number of output nodes. This choice of the error function
is motivated by the well-known fact (Bishop, 1996; Draper and Smith, 1981) that if the
distributions of the dependent variables are normal (gaussian), then least-square estimates
are equal to maximume-likelihood estimates.

The following are some specifics of the present application: The 23 input variables were
linearly scaled to lie in the range 0.1 to 0.9; the training algorithm was Conjugate Gradient,
and 1t was halted when no further decrease in F occurred; Simulated Annealing was employed

both to avoid and to escape the local minima of the error function; the activation function

1 .

TTexp(—a) the optimal number

for all the layers was taken to be the logistic function, f(z) =
of hidden nodes was determined by a bootstrapping method in which trained NNs with
different number of hidden nodes were tested on several (here 5) training and validation
data sets. For each of the 5 random, independent partitions of the data set into a training
set and a validation set, 100 random initial weights were considered, again to improve the
chances of finding a global (or a sufficiently deep, local) minimum.

A comment is in order regarding the determination of the optimal number of hidden
nodes. In this application, as in (Marzban and Stumpf 1995), several networks with a variety
of number of hidden nodes were tested, and the one that yielded the highest performance

on the validation set was selected. This precludes any overfitting to the training set. It may

be objected that this method of finding the optimal number of hidden nodes, though not



overfitting the training set, may overfit the validation set instead. However, such an outcome
is precluded since several (here 5) randomly selected validation sets (and training sets) were
considered. Additionally, these outcomes were averaged, and 90% confidence limits were
placed on them.

The training and the validation sets were selected from a total of 25,939 circulations
detected by the MDA. The number of tornadic circulations (i.e., events, or “17s) was 784,
and the remaining 25,155 circulations were nontornadic, making for a ratio of 784/25,155 =
0.031 . The 784 “1”s were randomly divided into two groups of 500 and 284 cases to be used
in the training set and the validation set, respectively (and this was repeated 5 times). The
ratio, 0.031 was employed to select 9155 (~ 284/0.031) “0”s in the validation set in order to
maintain the same climatological ratio of the class sizes in the validation set as in the entire
data set.

Two classification schemes are possible: In one, a classification can be made directly from
the 2 output nodes of the network in what is referred to as the “winner-takes-all” method.
In this method, there are as many output nodes as the number of classes (i.e. 2), and the
output with the higher activation designates the class. This discrete method of classification
is quite common and leads to one type of classification. We shall label these results as “NN”.

A second type of classification can be made by considering the conditional probability of a
class, given the outputs. In this method, these likelihoods can be converted to event posterior
probabilities using Bayes’ theorem. In order to compare the two types of classification in
terms of the measures considered herein, it is necessary to reduce the posterior probabilities
to dichotomous (0/1) outcomes. This reduction can be implemented by placing a threshold
on the probabilities and then varying this threshold in order to optimize some measure of

performance. However, given that classification is based on whether P, > Fy or Py > P,



(recall Py + P; = 1), the natural threshold for a probability is 50%. The threshold is fixed at
this value, and instead, the prior probability p; is varied in order to optimize some measure
of performance (Marzban, 1997). These results will be labeled as “NN_p”.

The transformation of the two output nodes to posterior probabilities is done in three
steps: First, the two output nodes, 0.5, 0,411, are combined into a single fictitious output

node, o:
o= f(ﬁ(aleft - UMght))?

where f is the logistic function, and 3 is a parameter that measures the strength of the
mixing; we have found that the ultimate results are quite insensitive to the exact value of
the [ parameter. Second, estimates of the likelihoods L;(o) are arrived at by a method

proposed by Parzen (1962). There, an estimator is shown to be

1 [(o—o ) /A2
L(o) = HZGXP [(r=3) /A
J

where o; are a random sample of size n. Note that this choice does not imply that the
Likelihoods themselves are gaussian. Here, the random sample ¢; is drawn from the training
data. In other words, n is the size of the training set, and the o; are the values of the single
fictitious output node that result from exposing the trained NN to the training data. The
parameter X is a “smoothing parameter” that is to be fixed; the final results are insensitive
to the specific value of A as well. Parzen’s method is simply one of many methods for
superimposing (or fitting) a density function - in this case, L;(c) - onto a histogram of o;
see Figures 2a and 2b. Third, and finally, these likelihood functions are then employed to
obtain posterior event probabilities, Pi(o), via Bayes’ theorem.

The final issue is that of the prior probability p; (=1 — pg). It is often argued that it

should be estimated from the ratio N1/(No + Np), where Ny and Ny are the tornadic and
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Figure 2: a) The distribution of activations, and b) Parzen’s fit at A = 0.1.

nontornadic sample sizes, respectively. However, it is shown in (Marzban, 1997) that this
choice is often not the one that optimizes a measure of performance. There, a gaussian
model was developed and it was shown that different measures of performance are optimized
at different values of p;. As a result, in this article, the values of the measures are computed

for p; = 0.01, and all other p; in the range 0.1 to 0.9, in 0.1 increments.

4 Measures of Performance

Many measures of performance have been examined (Brooks and Doswell, 1996; Doswell,
et al., 1990; Gandin and Murphy, 1992; Marzban and Stumpf, 1997; Murphy, 1996, 1988;
Murphy and Winkler, 1992; Murphy and Winkler, 1987), and many represent different as-
pects of performance. However, some behave pathologically in rare-event situations. One
that appears to be “most healthy” is the Heidke Skill Statistic (HSS), while another “not-so-
healthy” measure (Murphy and Epstein, 1967) is the Critical Success Index (CSI); for more

detail, see (Marzban and Stumpf, 1997). In this article, only these two measures will be
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considered - HSS because of its proper behavior in the rare-event situation, and CSI because
of its popularity in meteorological circles.
The performance of any classifier can be encapsulated in a Contingency Table (otherwise

known as the Confusion Matrix), or in short the C-table,

Ctable — [ @ b\ [ # of 0’s classified as 0’s 4 of 0’s classified as 1’s
rae=lce d )T # of 1’s classified as 0’s  # of 1’s classified as 1’s

Note that the total number of nonevents is given by Ny = a+ b, that of events is Ny = c+d,
and N = Ny + N;. As mentioned above, the two measures employed for the present analysis

are CSI and HSS, and they are defined as

d and HSS = 2ad — be)

= et (a+B)(p+d) +(ato)c+d)’

with a, b, ¢, d being the elements of the validation C-table.

Although it may not be apparent from these expressions, CSI does not take into account
any non-skill related factors such as bias or random guessing, but HSS does; it is easy to
show that HSS = 0 when classification is done randomly, or when it is done persistently (i.e.

classifying everything as either event or as nonevent).

5 Results

Figures 3a and 3b show the values of CSI and HSS, respectively, as a function of p;. The
values of the measures are the averages of the respective measures over the 5 random valida-
tion sets, and the error bars are the 90% confidence intervals. It can be seen that regardless
of the two measures of performance, at their respective optimal value of p;, the NN based on
the probabilistic classification rule (NN _p) outperforms linear discriminant analysis (LDA),

which in turn outperforms quadratic discriminant analysis (QDA). The horizontal lines corre-
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spond to the NN with the non-probabilistic classification rule ? (NN) which itself outperforms
the rule based on MSI.

6 Discussion

The performances of the various methods can be “explained:” For instance, it is not surprising
that the performance of the NN is higher than that of MSI, because one of the 23 inputs of
NN was MSI itself. Similarly, based on the fewer and less explicit assumptions in NN, it is
not surprising that NN_p (at its optimum) is higher than all the other non-NN methods. As
for why NN _p outperforms NN, this can be understood if one notes the rare-event nature
of the data; since there are many more nontornadic circulations than tornadic ones, an NN
trained on such disproportionate classes will have a tendency to classify more observations
as nontornadic than tornadic. Such a bias can reduce the overall performance of a non-
probabilistic NN. A somewhat surprising result is the superior performance of LDA over
QDA in spite of the additional assumption of homoelasticity (i.e. equality of the covariance
matrices) in the former. The reason for this is the relatively small sample size, especially that
of the tornadic circulations, because without the assumption of homoelasticity the covariance
matrices have many more parameters that must be estimated from a small sample. Needless
to say, these conclusions are specific to the problem at hand (i.e. the data set); larger data
sets, including different types of storms are currently under investigation.

Some general remarks are in order. All methods of statistical analysis have inherent
assumptions that limit their applicability, and NNs are no exception, although the assump-
tions made in an NN analysis are often milder and more implicit. For instance, in DA,

distributions are explicitly assumed to be gaussian (normal). In LDA, additionally, the co-

2The optimal number of hidden nodes was found to be 6, all on one hidden layer.
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variance matrices for the various classes are assumed to be equal (homoelasticity). There
exist nonparametric variations of DA that do not employ either assumption, but there are
still “kernels” and “smoothing parameters” with which one must reckon in estimating the
distributions (Silverman, 1986). Another nonparametric method with similar assumptions is
Classification and Regression Trees (CART); see Burrows (1991). In Multiple Linear Regres-
sion the underlying relation is assumed to be linear in the parameters. As the names suggest,
in Polynomial Regression, the function is assumed to be some prespecified polynomial, and
Logistic Regression assumes the logistic function f(z) = m. All of these models in-
corporate explicit assumptions whose violation may jeopardize the predictive capability of
the model.

NNs are thought to be robust in regards to the a priori distribution of the data (Masters,
1993); however the primary advantage of NNs is in that no explicit assumptions are made
regarding the underlying function; by varying the number of hidden nodes systematically,
one effectively parametrizes the space of all functions (Hornik, et al., 1989). On the other
hand, there is evidence to suggest that although all functions may be representable by NNs,
not all are equally learnable (Carnevalli and Patarnello, 1987; Ferran and Perazzo, 1990;
Parisi 1992). Consequently, it may still be argued that certain assumptions are made in an
NN analysis as well, although most are of an implicit nature.

Finally, it is worth pointing out that, in principle, for a proper NN development, one
must have three independent data sets: a training set, a validation set, and a test set.
The validation set may actually be used during the training phase in order to monitor the
performance of the NN, but the test set is to be kept completely out of the training phase. As
in regression methods, the performance of an NN on the training set itself is optimistically

biased. The bias can be reduced by evaluating the NN on the validation set, and even further
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reduced by testing the NN on the test set. However, the price one pays in this process is in
the smaller sample size (per set) and increased variance. For this reason, in this application,
no test set was constructed.

This is a specific instance of the bias/variance dilemma in NNs (Geman, et al., 1992;
Bishop, 1996; Ripley, 1996). The scope of this dilemma goes beyond the realm of NNs, but
the flexibility of NNs renders the dilemma of particular concern. It is well known that the
mean square error can be decomposed into a term that represents bias and another that
represents variance. The former is a measure of the average (over all data sets) difference
between the NN and the underlying function, while the latter is a measure of the extent to
which the NN depends on the particular choice of data set. It is evident that ideally one
would like to minimize bias while minimizing variance simultaneously. Since a sufficiently
complex NN - say, in terms of the number of hidden layers and hidden nodes - is capable
of representing any function to arbitrary accuracy, it follows that for finite data sets such
a complex NN may minimize bias, but it also has maximum variance. Conversely, an NN
with no hidden nodes minimizes variance but only at the cost of maximizing bias. Geman,
et al. (1992) show that one way to minimize both bias and variance is by cross-validation;
in cross-validation, some number of the training cases are left out to be used for validation.
Then these cases are placed back into the training phase and another set is kept out for

validation, etc. This has been the procedure adopted in the present article.

7 Conclusions

In summary, it is found that a neural network whose outputs are translated into posterior
probabilities, with the prior probabilities set appropriately, outperforms one that employs the

winner-takes-all classification scheme; it also outperforms the two versions of discriminant
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analysis - linear and quadratic. These results are statistically significant and hold true
regardless of whether performance is gauged in terms of the Critical Success Index or the
Heidke Skill Statistic.

Some points are worth emphasizing: Given that performance is a multifaceted entity,
the comparison of any two algorithms is a multifaceted endeavor. It is rare for one algorithm
to outperform another in terms of all the dimensions of performance. It is much more
ubiquitous to find an algorithm that excells in only a subset of all the performance measures.
For this reason, it is important to decide what the measure of performance is to be, before
any comparisons are made. Of course, there exist a variety of multi-dimensional “measures”
that can represent several aspects of performance at once, e.g. reliability diagrams. However,
in spite of the diagnostic advantages of such “measures”, their multidimensional nature may
preclude them as candidate measures for determining the winner of some contest, or the
better of two algorithms.

Therefore, the conclusions of this article are specific to the measures CSI and HSS. ? This
is the main reason why it is possible to increase the performance of an NN (in terms of CSI
or HSS) by varying the prior probabilities. In other words, it is entirely possible that a given

value of p; may maximize HSS, but be suboptimal for some other measure of performance.
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Figure 3: a) CSI and b) HSS as a function of pq, for the NN with the outputs transformed to
posterior probabilities (NN_p), the NN with a winner-takes-all classification criterion (NN),
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and the MSI-

based rule (MSI). 19



